ОСОБЕННОСТИ РАСЧЕТА И АВТОМАТИЗАЦИИ ИНФРАКРАСНОЙ СУШИЛКИ Кудрявец А.С.

Кудрявец Анатолий Сергеевич – магистрант, факультет заочного обучения, Кубанский государственный аграрный университет, г. Краснодар

Аннотация: в статье описывается малоизученный перспективный способ сушки материалов инфракрасным излучением. Приведены преимущества такого способа сушки. Показаны способы расчета необходимого воздухообмена и плотности излучения. Представлен пример определения перечня автоматизируемых функций и входных/выходных сигналов и данных.

Ключевые слова: сушка, инфракрасное излучение, автоматизация, расчет излучателей.

Сушка - один из основных технологических процессов в различных отраслях сельского хозяйства. Но возросшим запросам потребителей не всегда удовлетворяет существующее применение процессов сушки. Производство высококачественной продукции требует более совершенного оборудования с высокой интенсивностью ведения процессов [1].

Правильно и своевременно проведенная сушка не только повышает стойкость семян при хранении, но и улучшает его продовольственные и семенные качества.

В недостаточно высушенной массе проходит процесс самосогревания. В ней развиваются микроорганизмы и усиливаются бактериальные процессы, что снижает всхожесть семян и продовольственное качество зерна, разрушает питательные вещества и витамины трав, используемых на корм животным. Продолжительность безопасного хранения зависит от температуры материала и влажности.

Перспективный, но еще мало освоенный прием - радиационная сушка путем передачи тепла семени от генераторов инфракрасного излучения.

Инфракрасные лучи проникают на незначительную глубину (до 15 мм) внутрь облучаемого тела и вызывают его нагрев. В качестве генераторов можно применять специальные лампы, а также нагретые до определенной температуры открытым пламенем или горячими газами металлические и керамические поверхности.

Достоинством ламповых радиационных сушилок является малая теплоинерционность, простота и сравнительная безопасность в работе.

Процесс сушки существенно ускоряется при облучении зерна инфракрасными лучами и одновременном продувании воздухом, так как температурный градиент в поверхностном слое меняет при этом свой знак и способствует продвижению влаги к поверхности.

У инфракрасной сушки есть ряд преимуществ:

- 1) среда вокруг нагреваемого материала не является теплопередающей; следовательно, расход тепла на нагрев воздуха значительно меньше, а КПД установки выше;
- 2) учитывая зависимость оптических характеристик материалов отражения, пропускания и поглощения ими инфракрасных лучей от спектрального состава лучистого потока, можно в известных границах эффективно управлять режимами радиационного нагрева и сушки
 - 3) экологичная и высокопроизводительная сушка;
- 4) отсутствие прямого контакта между нагреваемой массой и излучателем не является препятствием для эффективной передачи тепла;

Высокая экономичность и производительность оборудования инфракрасной сушки и нагрева обеспечивается:

- безынерционностью оборудования, поскольку время выхода на рабочий режим панелей не более 30 секунд;
- возможностью нагрева части изделия (зонный нагрев), что невозможно реализовать при конвективном способе нагрева;
- малым временем нагрева материалов до заданной температуры, так как энергия при терморадиационном нагреве передается непосредственно изделию без промежуточного теплоносителя;
 - отсутствием необходимости предварительного прогрева сушильной установки;
- меньшей продолжительностью инфракрасной сушки по сравнению с конвективным способом сушки;
- оптимизацией потребляемой электроэнергии в зависимости от габаритов изделий, подлежащих сушке.

Таким образом, сушка инфракрасным излучением является одним из перспективных, но еще малоизученным методом сушки сельскохозяйственных культур

В сушилках основанных на данном методе в качестве источников инфракрасного излучения как правило используют электрические или газовые излучатели. В газовых радиационных сушилках излучатели нагреваются газом, сжигаемым непосредственно под ними. К электрическим относят: лампы, панели, трубки с электрообогревом. Наиболее широко распространены ламповые нагреватели, отличающиеся безинерционностью.

При тепловом расчете инфракрасных сушилок необходимо определить количество и схему размещения ламп. Также надо найти расход воздуха по максимально допустимой концентрации паров в воздухе.

При известном коэффициенте теплоотдачи а плотность излучения в Bt/cm^2 можно найти по формуле: $E = \frac{\alpha \cdot F^{'} \cdot (t_{mam} - t_B)}{0.86 \cdot A} \tag{1}$

$$E = \frac{\alpha \cdot F' \cdot (t_{Mam} - t_B)}{0.86 \cdot A} \tag{1}$$

где F'= F/F0 – отношение площадей полной поверхности к облучаемой ее части;

tMAT — максимальная или установившаяся температура материала в °С;

tB — температура окружающей среды в сушилке в °С;

А —коэффициент поглощения излучения.

Температуру нагрева тела и продолжительность сушки рассчитывают из уравнения кинетики облучаемого тела, полученного из уравнения теплового баланса сушки, $\tau = \frac{1}{D'} \cdot ln \frac{B + D' \cdot (t_{\textit{Mam}} - t_{\textit{B}})}{B + D' \cdot (t_0 - t_{\textit{B}})} \tag{2}$

$$\tau = \frac{1}{D'} \cdot \ln \frac{B + D' \cdot (t_{mam} - t_B)}{B + D' \cdot (t_0 - t_B)} \tag{2}$$

где

$$D' = \frac{\alpha \cdot \sigma}{c \cdot \rho} \tag{3}$$

$$D' = \frac{\alpha \cdot \sigma}{c \cdot \rho}$$

$$B = \frac{0.86 \cdot A \cdot E \cdot \sigma}{c \cdot \rho \cdot F}$$
(3)

В этих выражениях: $\Box\Box$ — коэффициент теплоотдачи в ккал/(м $^2\Box$ °С);

□□ = F/V — отношение площади поверхности облучаемого тела к его объему;

с — теплоемкость облучаемого тела в ккал/(кг \square °С);

□ □ плотность облучаемого тела в кг/м 3 ;

t0 — начальная температура материала в °С.

Теплоемкость влажного материала находится по формуле:

$$c = c_{\text{cyx}} \cdot \frac{100 - \omega}{100} + \frac{\omega}{100}$$
 (5)

— удельная теплоемкость сухого материала в ккал/(кг.°С), определяемая по здесь сСУХ справочным данным;

□ □ — влажность материала в %.

Расход воздуха находим из уравнения баланса влаги

При установившемся режиме сушки и отсутствии потерь влага поступает в сушилку с материалом и воздухом, а уходит из сушилки с высушенным материалом и воздухом. Запишем уравнение баланса влаги:

$$G_1 = \frac{\omega_1}{100} + L \cdot \frac{d_1}{100} = G_2 \cdot \frac{\omega_2}{100} + L \cdot \frac{d_2}{100}$$
 (6) здесь L — количество абсолютно сухого воздуха, необходимого для сушки, в кг/ч;

d1 и d2 — влагосодержание воздуха соответственно на входе в сушилку и выходе из нее в г на 1 кг сухого воздуха.

G₁ и G₂- количество материала поступающего в сушилку и высушенного соответственно

ω₁ и ω₂ начальная и конечная влажность материала

Обозначая удельный расход сухого воздуха (на 1 кг испаренной влаги) через 1 = L/W, найдем удельный расход сухого воздуха в кг на 1 кг влаги:

$$l = \frac{1000}{d_2 - d_1} \tag{7}$$

Данное развитие инфракрасной техники сушки связано с применением мощных потоков лучистой энергии. Однако эффективное управление быстропротекающими процессами сушки невозможно без применения автоматического регулирования и управлении.

Внедрение автоматизированных систем управления технологическими процессами (АСУ ТП) – один из наиболее эффективных способов повышения эффективности производства: снижения трудоемкости выпускаемой продукции и повышения конкурентоспособности предприятия.

Целями создания АСУ ТП являются:

- повышение качества выпускаемой продукции;
- повышение производительности технологического оборудования;
- повышение надежности и ремонтопригодности технологического оборудования;
- снижение трудоемкости технологических операций;
- снижение энергоемкости выпускаемой продукции;
- синхронизация с другими технологическими комплексами.

Однако системы автоматизации являются сложными системами с множествами подсистем, со сложной структурой комплекса технических средств и программного обеспечения. Проектирование, интеграция и сопровождение таких систем невозможно без применения специализированного программного обеспечения.

При проектировании АСУ ТП первоначально необходимо определить перечень автоматизируемых функций и входных/выходных сигналов и данных

Перечень автоматизированных функций определяется на основе технологической схемы и сформированного общего перечня функций, реализуемых технологическим оборудованием. Определение вида автоматизированной функции — это определение принципа, способа реализации частной задачи автоматизации. После определения, какие функции технологического процесса необходимо автоматизировать составляется перечень оборудования подлежащего автоматизации (Таблица 1).

Таблица 1. Перечень оборудования, подлежащего автоматизации

N	Наименование	технологического	Автоматизируемая функция		
	оборудования				
	Конвейер		1. Включение/отключение конвейеров		
	_		2. Контроль схода ленты		
			3. Контроль скорости		
			4. Контроль перегрузки		
	ИК-излучатели		1. Включение/отключение ИК-излучателей		
			2. Контроль температуры		
			3. Контроль влажности продукта		

Для дальнейшей разработки автоматизированной системы необходимо составить перечень входных/выходных сигналов и данных (Таблицы 2, 3). При составлении перечня указываются:

- наименование измеряемой величины и сигнала;
- источник сигнала;
- диапазон изменения технологического параметра;
- точность представления технологического параметра;
- тип сигнала.

Таблица 2. Перечень входных сигналов

	Наименов	Источник	Диапаз	Точнос	Тип	Имя	Ти
№	ание	сигнала	ОН	ТЬ	сигнала	переменной	П
П	измеряемой		изменения	представле			перем
/п	величины,		параметра	ния			енной
	сигнала			параметра			
	Конвейер1	Датчик	true/false	-	24VDC	KonveierOn	ВО
	включен	движения/положе					OL
		ния БТП-211					
	Контроль	Датчик	true/false	-	24VDC	KonveierSh	ВО
	схода ленты	контроля схода				L	OL
		ленты INNOLevel					
		BMS					
	Контроль	Тепловое реле	true/false	-	24VDC	KonveierPe	ВО
	перегрузки	<u>^</u>				r	OL
	конвейера						

Температу	Термопара	0-100℃	±0,5C	420	Temp1	RE
ра в начале	ТПП (S)			мА	_	AL
сушилки						
Температу	Термопара	0-100℃	±0,5C	420	Temp2	RE
ра в конце	ТПП (S)			мА	_	AL
сушилки						
Влажность	Датчик	5-95%	±1%	420	Damp	RE
воздуха на	влажности			мА		AL
выходе	FIZEPR-					
сушилки	SW100.10					

Таблица 3. Перечень выходных сигналов

№ п /п.	Наименование формируемой величины, сигнала	Приемник сигнала	Диапазон изменения выходного сигнала	Тип сигнала	Имя переменной	Тип перем енной
	Включение конвейера1	Магнитный пускатель конвейера 1	true/false	220VAC	KonveierOn 1	BOOL
	Включение конвейера2	Магнитный пускатель конвейера2	true/false	220VAC	KonveierOn 1	BOOL
	ИК-излулатель включен	Магнитный пускатель	true/false	220VAC	izluchatelO n	BOOL

Для составления управляющей программы необходимо определить типы переменных и составить идентификаторы переменных, в которых будут храниться значения технологических параметров, в соответствие со стандартом IEC 61131-3.

Таким образом при применении радиационного способа сушки совместно с автоматизированной системой управления технологическим процессом значительно повышается производительность сушилки за счет быстрого нагрева материала до нужной температуры. А так же происходит уменьшение трудозатрат, так как снижается доля участия человека в процессе сушки.

Список литературы

- 1. *Пьявченко Т.А.*, *Финаев В.И*. Автоматизированные информационно-управляющие системы. Таганрог: Изд-во ТРТУ, 2007. 271 с.
- 2. Чагин О.В., Кокина Н.Р., Пастин В.В. Оборудование для сушки пищевых продуктов. Иван. хим.технол. ун-т.: Иваново, 2007. 138 с.