О ТРЕХ ВИДАХ КАТУШКООБРАЗНЫХ ПОВЕРХНОСТЕЙ Кайдасов Ж.

Кайдасов Жеткербай - кандидат физико-математических наук, профессор, кафедра математики,

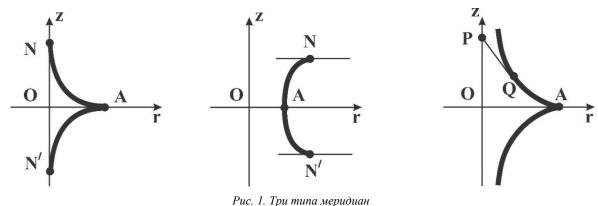
Актюбинский региональный государственный университет им.К. Жубанова, г. Актобе, Республикка Казахстан

Аннотация: в статье рассматриваются регулярные поверхности отрицательной гауссовой кривизны в трехмерном евклидовом пространстве E^3 , которые по внешнему виду очень похожи на псевдосферические. Преобразованием параметрических уравнений катушки Миндинга определены аналитические описания трех типов таких катушкообразных поверхностей и установлены их геометрические формы с использованием компьютерной графики. Вычислением полной кривизны для каждого типа установлено, что они мало отличаются от псевдосферических.

Ключевые слова: гауссова кривизна, псевдосферические поверхности, катушка Миндинга.

УДК 514.7

Изучение поверхностей постоянной отрицательной кривизны в E^3 (псевдосферических) исторически оказалось тесно связанным с проблемой интерпретации геометрии Лобачевского. Еще в 1868 году Э. Бельтрами показал, что на поверхностях постоянной отрицательной кривизны выполняется локально планиметрия Лобачевского [1]. Укажем поверхности вращения постоянной отрицательной кривизны, найденные Ф. Миндингом и Э.Бельтрами. Поверхности вращения с указанными на рис. 1 меридианами называют соответственно волчком Миндинга, катушкой Миндинга и псевдосферой (или поверхностью Бельтрами) [2].



Эти поверхности соответственно изображены на рис. 2. В E^3 нет других поверхностей вращения постоянной отрицательной кривизны.

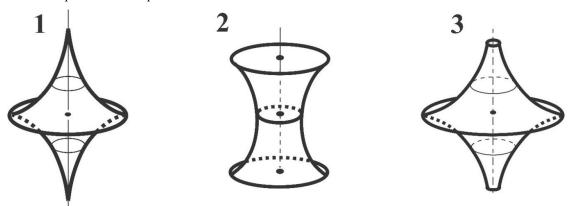


Рис. 2. Поверхности вращений, соответствующие трем типам меридиан (1 - Волчок Миндинга; 2 - Катушка Миндинга; 3 - Псевдосфера)

Углубленный анализ псевдосферы был проведен Э. Бельтрами в 1868 г. Он установил, что геометрия псевдосферы совпадает с геометрией определенной области на плоскости Лобачевского – орикруга.

Таким образом, благодаря появлению первых псевдосферических поверхностей, и в первую очередь псевдосфере, геометрия Лобачевского получила наглядный, реальный смысл: длины, углы, площади смогли теперь пониматься в смысле их естественно привычного измерения(например, на псевдосфере).

Результаты Ф. Миндинга и исследования Э. Бельтрами положили начало развитию нового раздела дифференциальной геометрии – исследованию и построению поверхностей отрицательной кривизны, особенно псевдосферических поверхностей. Например, применив преобразование Бэклунда к псевдосфере, ученные получили новые виды псевдосферических поверхностей [1].

В данной работе среди приведенных на рис. 2 поверхностей особую роль играет катушка Миндинга, уравнения которой могут быть представлены в виде:

$$X = \cos u Chv$$
, $Y = \sin u Chv$, $Z = -\int_0^v \sqrt{1 - Sh^2t} dt$, $-\infty < u < +\infty$, $-a \le v \le a$.

Преобразуя эти уравнения с сохранением отрицательности кривизны, можно получить новую поверхность. Назавем ее катушкообразной поверхностью.

Теперь рассмотрим примеры построения некоторых катушкообразных поверхностей. По внешному виду их можно разбить на три группы.

Обмотанные катушкообразные поверхности.

1. Дважды обмотанная: X = (3cos2u - 0.3cos3u)Chv,

1. дважды обмотанная:
$$X = (3cos2u - 0.3cos3u)chv$$
, $Y = (3sin2u - 0.3sin3u)Chv$, $Z = -\int_0^v \sqrt{1 - Sh^2t}dt$, $0 \le u \le 2\pi$, $0 \le v \le 3$ (Рис. 3). По известной формуле[4] $K = (LN - M^2)/(EG - F^2)$ вычислим гауссову кривизну: $-(74.43 - 27*cosu)(18.27 - 4.5*cosu)$

 $K = \frac{-(7.4.3 - 27.5558)(-1.5)}{\{(36.81 - 10.8*cosu)[(8.09 - 1.8*cosu)Sh^2v + 1] - 0.81*sin^2u*Sh^2v\}^2}$

2. Трижды обмотанная:

$$X = (1.2cos3u - 1/3cos4u)Chv, \qquad Y = (1.2sin4u - 1/3sin4u)Chv, \qquad Z = -\int_0^v \sqrt{1 - Sh^2t}dt$$
, $0 \le u \le 2\pi$, $0 \le v \le 3$ (Рис. 4).

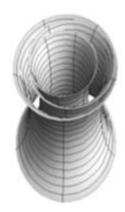


Рис. 4. Трижды обмотанная

Аналогично можно построить поверхности и с большим числом обмоток.

Секционные катушкообразные поверхности.

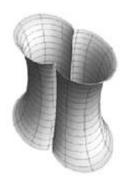
$$Z = -\int_0^v \sqrt{1 - Sh^2t} dt$$
, $0 \le u \le 2\pi$, $0 \le v \le 3$ (Рис. 5).

- Двусекционная: X = (1.2cosu 0.4cos3u)Chv, Y = (1.2sin4u 0.4sin3u)Chv, $Z = -\int_0^v \sqrt{1 Sh^2t}dt$, $0 \le u \le 2\pi$, $0 \le v \le 3$ (Рис. 5). Пятисекционная: X = (1.2cosu 0.2cos6u)Chv, Y = (1.2sinu 0.2sin6u)Chv, Z = (1.2cosu 0.2cos6u)Chv, Z = (1.2cosu 0.2cos6u)Chv $-\int_0^v \sqrt{1-Sh^2t}dt$, $0 \le u \le 2\pi$, $0 \le v \le 3$ (Рис.6).
- $^{\circ}$ 3. Девятисекционная: X=(1.2cosu-0.12cos10u) Chv, Y=(1.2sinu-0.12sin10u) Chv, Z=(1.2sinu-0.12sin10u) $-\int_0^v \sqrt{1-Sh^2t}dt, \ 0 \le u \le 2\pi,$

 $0 \le v \le 3$ (Рис. 7).

Для этой поверхности Гауссова кривизна вычисляется по формуле:

$$K = \frac{-3,01132}{1,0318(1+(-0,1288-0,8712\cos 9u)Sh^2v)^2}.$$



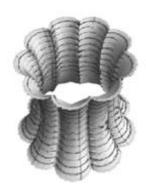


Рис. 5. Двухсекиионная

Рис. 6. Пятисекиионная

Рис. 7. Девятисекиионная

Для каждой из указанных поверхностей, чтобы сохранилась отрицательность кривизны, можно определить связь между коэффициентами при тригонометрических функции в параметрических уравнениях.

III. Винтовые катушкообразные поверхности.

1. X = cosuChv, Y = sinuChv, $Z = 0.3u - \int_0^v \sqrt{1 - Sh^2t} dt$, $0 \le u \le 6\pi$, $0 \le v \le 3$ (Рис. 8). Параметрические уравнения можно записать в общем виде:

ираметрические уравнения можно записать в общем виде.
$$X = acosuCh(bv), \qquad Y = asinuCh(bv), \qquad Z = 0.3u - \int_0^v \sqrt{1 - Sh^2(bt)} dt \,, \qquad 0 \le u \le 6\pi,$$

$$0 \le v \le 3.$$

Для этой поверхности гауссова кривизна будет имеет вид:

$$K = \frac{-(b^2 + 0.09b^4 * Tanh^4(bv))}{\{1 + 0.09b^2 * Tanh^2(bv)\}^2}.$$

для этой поверхности гауссова кривизна оудет имеет вид:
$$K = \frac{-(b^2 + 0.09b^4 * Tanh^4(bv))}{\{1 + 0.09b^2 * Tanh^2(bv)\}^2}.$$
 2. $X = cos\left(\frac{3u}{2}\right)Chv$, $Y = sin\left(\frac{3u}{2}\right)Chv$, $Z = 0.3u - \int_0^v \sqrt{1 - Sh^2t}dt$, $0 \le u \le 6\pi$, $0 \le v \le 3$ (Рис.).

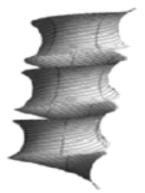
0 < v < 3(Рис.).

Параметрические уравнения можно записать в общем виде:

$$X = cos(mu)Chv, \qquad Y = sin(mu)Chv, \qquad Z = 0.3u - \int_0^v \sqrt{1 - Sh^2t} dt, \qquad 0 \le u \le 6\pi, \qquad 0 \le v \le 3.$$

Для этой поверхности гауссова кривизна будет имеет вид:

$$K = \frac{-(1+0.09/m^2*Tanh^4(v))}{\{1+0.09/m^2*Tanh^2(v))\}^2}.$$



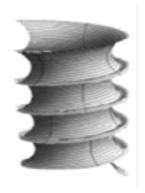


Рис. 9. Винтовая с самопересечением

Графические изображения этих поверхностей построены в среде WolframMathematica.

Список литературы

- 1. Попов А.Г. Псевдосферические поверхности и некоторы задачи математической физики // Фундаментальная и прикладная математика. Т. 11, 2005. № 1. С. 227-239.
- 2. Фоменко В.Т. Поверхности отрицательной кривизны // Математика. № 12, 1999. С. 103-108.
- 3. Позняк Э.Г., Шикин Е.В. Дифференциальная геометрия: Первое знакомство. М.: Изд-во МГУ, 1990. 384 c.